Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Airborne Fine Particles and Risk of Hospital Admissions for Understudied Populations: Effects by Urbanicity and Short-Term Cumulative Exposures in 708 U.S. Counties

Mercedes A. Bravo, Keita Ebisu, Francesca Dominici, Yun Wang, Roger D. Peng, and Michelle L. Bell

Table of Contents

- **Table S1.** Characteristics of PM_{2.5} pollution data.
- **Table S2.** Summary statistics of model evaluation for 24-h average PM_{2.5} county level exposure estimates
- **Figure S1.** Availability of monitor data by county for the study area output (data from 2000 U.S. Census; map created using ArcGIS).
- **Figure S2.** County-specific correlation between exposure estimates derived from observed data and CMAQds simulated PM_{2.5} concentrations for the 418 counties with monitoring data and populations \geq 50,000, 2002-2006 (data from 2000 U.S. Census; map created using ArcGIS). This map shows correlations between county level monitor-derived daily exposure estimates for daily county level CMAQds-derived exposure estimates. Only counties with monitoring data and populations \geq 50,000 are included in the comparison

Figure S3. Comparison of county-specific maximum likelihood health effect estimates obtained from monitor-derived exposure estimates (x-axis) versus CMAQds_subset-derived exposure estimates ($\hat{\beta}^c$ coefficients relating PM_{2.5} concentration to hospitalization rates in county-specific regression model): (a) cardiovascular; (b) respiratory (n=418 counties) Point size is inversely proportional to the magnitude of the standard error associated with each monitor-derived county-specific maximum likelihood health effect estimate, such that a smaller point size indicates greater uncertainty associated with that county-specific estimate. Note that these values represent coefficients that have not been scaled.

Figure S4. Percent increase in hospital admissions associated with a $10\mu g/m^3$ increase in PM_{2.5} concentration, estimated using monitoring data (gray) and downscaler output (black), only for counties with monitoring data (CMAQds_subset), by level of urbanicity (lag 0) Vertical lines represent 95% posterior intervals. Urbanicity is measured as percent of county population residing in nonurban areas

Table S1. Characteristics of $PM_{2.5}$ pollution data/output

	Monitoring data	CMAQds output
Data description	Federal Reference Method ambient air quality monitors	Daily predictions of pollutant concentrations at Census Tracts centroids from combination of ambient monitoring data and CMAQ v4.6 output
Spatial form of concentration observation/estimate	Point	Point
Spatial resolution of original dataset	Variable	Variable
Temporal resolution	Variable, ~1 observation/3 days	Daily, every day
Method(s) used to estimate county level concentration	Monitor(s) within given county averaged	Population weighted Census Tracts to estimate county level conc.
Spatial coverage of exposure estimates	~418 counties	~2,818 counties

Table S2. Summary statistics of model evaluation for 24-h average $PM_{2.5}$ county level exposure estimates a,b

EvaluationMetric	Value
Mean daily county level concentration	
CMAQds	$12.28 \ \mu g/m^3$
CMAQds_subset	$12.60 \mu \text{g/m}^3$ $12.48 \mu \text{g/m}^3$
Observed (monitor-derived)	$12.48 \mu g/m^3$
Normalized mean bias (NMB) (%)	0.95%
Normalized mean error (NME) (%)	9.75%
Mean correlation (standard deviation)	0.97 (0.032)

^a Formulas and further description of metrics of model performance are presented in Zhang et al. 2006.

^b The mean correlation refers to the mean correlation between monitor-derived and CMAQds-derived exposure estimates within a county (and not correlations across all counties and days).

Figures

Figure S1. Availability of monitor data by county for the study area (data from 2000 U.S. Census; map created using ArcGIS).

Figure S2. County-specific correlation between exposure estimates derived from observed data and CMAQds simulated $PM_{2.5}$ concentrations for the 418 counties with monitoring data and populations \geq 50,000, 2002-2006 (data from 2000 U.S. Census; map drawn using ArcGIS). This map shows correlations between county level monitor-derived daily exposure estimates for daily county level CMAQds-derived exposure estimates. Only counties with monitoring data and populations \geq 50,000 are included in the comparison

Figure S3. Comparison of county-specific maximum likelihood health effect estimates obtained from monitor-derived exposure estimates (x-axis) versus CMAQds_subset-derived exposure estimates ($\hat{\beta}^c$ coefficients relating PM_{2.5} concentration to hospitalization rates in county-specific regression model): (a) cardiovascular; (b) respiratory (n=418 counties). Point size is inversely proportional to the magnitude of the standard error associated with each monitor-derived county-specific maximum likelihood health effect estimate, such that a smaller point size indicates greater uncertainty associated with that county-specific estimate. Note that these values represent coefficients that have not been scaled.

Figure S4. Percent increase in hospital admissions associated with a 10μg/m³ increase in PM_{2.5} concentration, estimated using monitoring data (gray) and downscaler output (black), only for counties with monitoring data (CMAQds_subset), by level of urbanicity (lag 0). Vertical lines represent 95% posterior intervals. Urbanicity is measured as percent of county population residing in nonurban areas.

References

Zhang Y, Liu P, Pun B, Seigneur C. 2006. A comprehensive performance evaluation of MM5-CMAQ for the Summer 1999 Southern Oxidants Study episode - Part I: Evaluation protocols, databases, and meteorological predictions. Atmos Environ 40: 4825-4838.